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Abstract: - In Machine Learning, different techniques, methods and algorithms are applied in order to a better 
approach for the problem that is solving. Adaptive learning, self-organization of information, generalization, 
fault tolerance and real-time operation are some of the most used in this field. These systems are dynamic and 
they can learn from the data adapting to the nature of the information. But an excessive adaptation or 
improvement of the response to the training data can lead to a poor generalization in many cases. Excessive 
training with the same set of data will cause the classification curves to over-detail the formal variations of that 
set. To avoid this overfitting, certain preventions can be taken. One possible option is to use the regularization 
technique keeping all the variables. This technique works well when we have many input parameters and each 
contributes "a little" in the prediction. We can conclude that the number of input features compared with the 
number of training samples, is really important to avoid overfitting. 
 
Key-Words: - Machine Learning, overfitting, underfitting, regularization. 
 
1 Introduction 
Definition of Machine Learning has not been 
reached an agreement but the different techniques, 
methods and algorithms that make up the so-called 
Machine Learning share a series of common 
characteristics. Among them, we can name the most 
relevant: adaptive learning, self-organization of 
information, generalization, fault tolerance and real-
time operation [1]. 

Those kind of systems learn from the data 
adapting to the nature of the information. They are 
dynamic self-adaptive systems that learn and change 
according to the data presented to them. 

In the adaptation process, they are able to 
abstract essential characteristics of the input 
information depending on certain degree of freedom 
that is imposed in the design of the machine. They 
are able to organize the information. 

Generalization is the ability to respond 
appropriately to data not previously presented in the 
training phase, to generalize the conclusions 
extracted from the learnt data to the real world data. 

There are two different aspects regarding fault 
tolerance. First, the tolerance to failures in the input 

information (incomplete, noisy or distorted entries). 
Fault tolerance in the data is also called tolerance. 
Second, the tolerance to failures of the whole 
machine, where if it destroys or alters part of it, it 
can continue working (although some degradation). 
This last type of tolerance is given thanks to internal 
distributed representation (information not 
localized), and the existence of a certain degree of 
redundancy that characterize some techniques [2]. 

Finally, one of the keys to their success is the 
possibility to implement them easily with existing 
technology getting real-time operational machines. 
Even in recent years, platforms that specifically 
implement the different techniques and architectures 
have appeared, out of the von Neumann 
architecture. 
 
 
2 The generalization-adaptation 
dilemma 
An excessive adaptation or improvement of the 
response to the training data can lead to a poor 
generalization in many cases. Excessive training 
with the same set of data will cause the 
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classification curves to over-detail the formal 
variations of that set. That is the well-known 
problem of overfitting. 

How to measure generalization? We can only 
have an estimate of it, never a security over its 
value. After being trained, the system must present 
the best measures (accuracy, classification error, 
precision, recall, F1 score, etc.) against the real data 
set. We only can try with the largest amount of real 
data available and take different measures of 
success. If the system presents sufficiently good 
ratings for all the markers and with a real and varied 
set (in time and variety) of data, we will accept that 
it generalizes correctly [3]. 

To measure the generalization of the system we 
should always use real data. Data without bias, as 
varied as possible. Data used must offer a 
representative diversity of the diversity of the set of 
data with which the machine must work during its 
normal operation. The use of real data is of vital 
importance, without ‘cooking’ or selecting the data, 
without introducing a tendency. 

In our case, we use Artificial Neural Networks. 
There are many neural network types, although the 
most widely used is the single hidden layer back-
propagation network, or single layer perceptron. 

This type of network is applied normally both to 
regression or classification. For regression, typically 
K = 1 (dimension) and there is only one output unit 
Y1. But this kind of networks can manage multiple 
quantitative responses in a continuous trend. 
Therefore, in general, for a classification of K 
dimension, there are K units as output, with the ith 
unit representing the probability of the class i. So, 
there are i target values Yi, where i = 1,…, K, each 
of them being coded as a 0 to 1 variable for the ith 
class. 

In this process, the derived characteristics Zj are 
usually originated from linear combinations of the 
inputs, and then the target Yi is calculated as a 
function of linear combinations of the Zj: 

 

( )0 1,...,T
j j jZ X j Jσ α α= + =  (1) 

 

0 1,...,T
i i iY Z i Kβ β= + =  (2) 

 
( ) ( ) 1,...,i if X g Y i K= =  (3) 
 

where Z = (Z1, Z2, …, ZJ), and Y = (Y1, Y2, …, YK). 
Other notations represents as follows: 

jkα : connection weight between input unit k 
and hidden unit j 

ijβ : connection weight between hidden unit j 
and output unit i 

0 0,j iα β : bias terms 
σ : hidden unit activation function 

ig : output activation functions 
 
 
3 The overfitting problem 
We can have hypotheses that fit perfectly or very 
well to the training data but that do not reflect the 
tendency of the model well, or fail to generalize to 
new examples. This usually happens when we have 
a high number of input features (p) compared with 
the number of training samples (n), which gives rise 
to very complicated functions with many 
unnecessary curves and angles. 

Overfitting, therefore, is characterized by high 
accuracy for a classifier when evaluated on the 
training set but, at the same time, low accuracy 
when the evaluation is on a separate test set. In 
some references, overfitting has been recognized as 
a problem in p ≫ n settings [4]. In high-dimensional 
low sample size settings, case that is usual in some 
fields such as Medicine, different authors remark 
that the apparent (training set, re-substitution) 
accuracy of a classifier is highly optimistically 
biased and, therefore, if we want a good 
classification, we do not have to take it into account. 
Accuracy should be calculated based on the 
evaluation of the classifier on separate test sets. It 
should also be possible to complete re-sampling in 
which the model is re-developed for each re-
sampling [4, 5, 6]. 

In the case of a typical example with several data 
of two different types (in the next figures, blue 
circles data and red circle data), we could happen to 
the following with a high number of parameters. 
We could obtain a model like the Fig. 1, when in 
fact we would prefer a model more similar to one of 
the Fig. 2. 

The learning curves are the curves that show the 
accumulative cost function value for the test (or 
validation) and training set with respect to the size 
of the training set (number of training examples) 
[7]. 

We can use them to know if getting more 
examples of training could help improve the system. 

If underfitting exists, as the number of examples 
grows the cost functions will maintain in high and 

WSEAS TRANSACTIONS on MATHEMATICS Imanol Bilbao, Javier Bilbao, Cristina Feniser

E-ISSN: 2224-2880 275 Volume 17, 2018



similar values. Getting more examples will not help 
us. 

 

 
Fig. 1. Curve that overfits the boundary of the two 

types of data. 
 
 

 
Fig. 2. Curve that fits well the boundary of the two 

types of data. 
 

If there is overfitting, as the number of examples 
grows the test cost function will go down and 
training cost will stay at a low value. Between the 
cost functions there will be a big difference. 

According to Hardt and Lin, the process of 
learning where high-capacity models involved and 
with long stretched training time on powerful 
devices could guide to a possible risk of overfitting 
[8, 9]. 
 
 
4 Solutions for overfitting 
To avoid this, certain preventions can be taken. 
Among them, we can mention: 

a) the re-adaptation to new training sets 
(online training if we can ensure a variable 
nature of the data in a natural way), 

b) the limitation of the number of iterations 
carried out with the same data set, 

c) the use of learning curves, 

d) minimization of the values of the weights 
(also looking for their simplest 
relationships), 

e) the use of regularization (parameter λ), etc. 
If we have an overfitting problem, then we can: 
• Get more examples for training. 
• Test increasing the regularization parameter. 
• Test with smaller input features sets (input 

variables). See if any of the variables is 
redundant or useless. (Maybe with the 
number of variables we have chosen we 
need more examples, as we are not going to 
get them, we chose to reduce the variables, 
so they will need fewer examples). 

 
Avrutskiy mentions a contradiction between the 

necessity to increase network size and decrease in 
minimum number of points that prevent overfitting 
leads to his study [10]. According to the key 
principle in artificial neural networks that says 
precision is not the goal and a reasonable 
approximation is enough as a good result, the 
process of altering cost functions is omitted and 
instead the one with maximum number of available 
derivatives is used. 
 
5 Regularization 
Different techniques has used during the last years 
to address overfitting. For example, we can mention 
weight decay, early stopping and weight elimination 
in order to control overfitting [11]. One of the most 
used techniques has been the called early stopping 
and there are several references about it [12, 13, 14, 
15]. Nevertheless, in some areas of research, such as 
time series of complex systems' behavior, this 
technique stops the training process too early. Other 
cons is that the chance to detect some relations 
decreases (for example, for meaningful relations 
between the network outputs and actual behavior of 
the complex system [16]). 

Other authors, particularly for predicting time 
series, use the Elman networks, which is a positive 
feedback neural network with the typical three main 
levels of layers: input, hidden and output. Elman 
[17] describes it as the following: 

“Both the input units and context units activate 
the hidden units; and then the hidden units feed 
forward to activate the output units. The hidden 
units also feed back to activate the context units. 
This constitutes the forward activation. Depending 
on the task, there may or may not be a learning 
phase in this time cycle. If so, the output is 
compared with a teacher input and backpropagation 
of error is used to incrementally adjust connection 
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strengths. Recurrent connections are fixed at 1.0 and 
are not subject to adjustment. At the next time step 
t+1 the above sequence is repeated. This time the 
context units contain values which are exactly the 
hidden unit values at time t. These context units thus 
provide the network with memory.” 

In this case, the focus is on a technique based on 
ensemble neural networks [18, 19, 20] to achieve 
the generalization. For this purpose, training data 
have a sequence of the previous behavior of the 
worked system. 

In the method, a network that has the best 
generalization on the new training set is selected. At 
the same time, the number of neurons in the hidden 
layers of the network varies in this step, following 
these equations: 

 

10
11

20

nn x
n

= ×  (4) 

 

21 20n x n= +  (5) 
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(6) 

 
where n10 and n20 are the initial number of neurons 
in the first and second hidden layers of the first set 
of networks and n11 and n21 are the new values. IN is 
the iteration number and x is a value used to 
calculate the new numbers of neurons. 

Another possible option if this happens is to use 
the regularization technique keeping all the 
variables. This technique works well when we have 
many input parameters and each contributes "a 
little" in the prediction. 

If we have an overfitting problem in our 
hypothesis function and we know which parameters 
should be less important, we can try to reduce the 
influence of those terms. Generalizing this idea, 
making the different influences small or close to 
zero, helps to have simpler hypotheses with less 

angulations and therefore less conducive to 
overfitting. 

This is especially true if the contribution to the 
prediction of the different input parameters is 
similar. 

It is impossible to know in advance which 
parameters may be more relevant in our hypothesis 
and in what proportion, so in regularization we will 
treat all parameters equally trying to get the smallest 
possible influence values and thus reduce the 
influence of its associated parameters. Since the free 
design terms are not associated with any parameter, 
they are not usually regularized. 

An excess in the regularization can lead to 
hypotheses that are too soft, and even of constant 
value in the last extreme, which will end up 
incurring in underfitting, so a certain care is 
necessary when choosing the regularization 
parameter λ. 
 
 
5.1 Feature reduction 
In the case of facing an overfitting problem we can 
reduce the number of parameters manually, 
analyzing which ones are more important and we 
will conserve, and which ones seem secondary and 
we can eliminate them. We can also try to do this 
automatically through some technique like PCA. 
Unfortunately, in this way we will always be losing 
information. 

Remember that it is not recommended to use 
PCA to prevent overfitting, because although in 
some cases it could be achieved, equal or better 
results can be obtained with the regularization, this 
being a technique that does not eliminate 
information from the data that could be valuable. It 
is advisable to try always the learning algorithm 
without applying PCA. 

PCA is a method that seeks to minimize the 
projection error by reducing the data to a smaller 
number of dimensions. The method tries to find a 
vector space to project the data so that the projection 
error is minimal. 

The error introduced in the simplification will be 
less if the features of the data are more linearly 
related, but we will always lose some information 
when applying it. 

Remember that any new example obtained 
subsequently will be converted using the same 
reduction matrix used in PCA, which was originally 
calculated only with the training cases. Therefore, 
the validation and test data will not influence the 
calculation of the matrix. 
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6 Features-Training samples ratio 
compromise 
As we have said before, the number of input 
features compared with the number of training 
samples, is really important to avoid overfitting. If 
we have a lot of features and very few samples the 
conclusions extracted from the training data are 
weak and may not be generalized to global real data. 
That could be known as the ‘looking at clouds’ 
effect, where we are imagining forms, for example a 
sheep, in a cloud and concluding that all of them 
look as a sheep. 

Different authors offer different ratios, but to be 
able to conclude a statistically significant 
generalization, even if we cannot be completely sure 
about that, a ratio of 100:1 samples to features is 
recommended. 

That ratio has always to be tested observing the 
learning curves to know if getting more samples 
would improve the final result with real data. 
 
 
7 Conclusion 
Not only in the case of appearing overfitting 
problem, but in order to use Machine Learning with 
all its potential, and to generalize the results of our 
machine for real data, we must try to adopt good 
practices: 

• Use real data for training, avoiding data that 
are out of range. 

• Keep a good proportion of features to 
training examples. 

• Analyze the learning curves to see if 
overfitting occurs. 

• Use the regularization within the chosen 
technique. 

• Reduce the number of features as a last 
alternative. 
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